THE PYTHAGOREAN

 THEOREM

CFE 3285V
OPEN CAPTIONED
ALLIED VIDEO CORPORTATION 1993
Grade Levels: 9-12
14 minutes

DESCRIPTION

Reviews the definition of a right triangle before a brief history of the development of the Pythagorean theorem. Shows how to use the theorem to solve for the hypotenuse (c) and each of the two sides (a and b). Briefly presents applications of the theorem.

INSTRUCTIONAL GOALS

- To review the right triangle and its parts.
- To re-create the development of the Pythagorean theorem.
- To rewrite the Pythagorean theorem to solve for a and b.
- To show how to use the Pythagorean theorem.
- To present practical applications of the Pythagorean theorem.

BEFORE SHOWING

1. Read the CAPTION SCRIPT to determine unfamiliar vocabulary and language concepts.
2. Using the calculator, practice finding the square and square roots of numbers.
3. Make a time line from 585 BC to the present. Point out the period of time in which Pythagoras lived.

DURING SHOWING

1. View the video more than once, with one showing uninterrupted.
2. Pause at the scene showing the bust of Pythagoras. His discovery has made him famous for 2600 years. Determine how that number was derived.
3. Pause at the scene showing the substitution of numerical values for a and b.
a. Substitute other values for a and b and calculate c.
b. Explain that the answer for c is usually a radical expression, not an integer.
4. Pause at the scenes showing how to rewrite the theorem to solve for a and b.
a. Using the blackboard, visually explain the steps in more detail.
b. Substitute other values for c and a (or b) to find the remaining side.
5. Pause after the scene showing the wall and ladder application. Re-create that demonstration in the classroom and calculate the value for b.

AFTER SHOWING

1. Use a computer generated graphic to construct right triangles. Give values for two of the sides and solve for the third side.
2. Cut a $3^{\prime \prime} \times 5^{\prime \prime}$ index card into three right triangles.
a. Use a ruler to measure the lengths of the sides.
b. Design a chart with these column headings: Short side, Long side, Hypotenuse, (Short side) ${ }^{2}$, (Long side) ${ }^{2}$, and (Hypotenuse) ${ }^{2}$.
c. Record the measurements in the chart and look for a pattern.
3. Research and report on Pythagoras and the secret math society to which he belonged.
4. Records of this theorem's use in northern Africa predate Pythagoras by hundreds of years. Report on this topic.
5. According to The Guinness Book of World Records, the Pythagorean theorem has more published proofs than any other theorem.
a. Identify and explain one or more of these proofs.
b. One resource for this is the Ask Dr. Math website: http://forum.swarthmore. edu/dr.math/
6. Find two different Pythagorean triples that have 24 as one of the numbers.
7. Design a work sheet of practical applications of the Pythagorean theorem.
8. Prove the converse of the Pythagorean theorem.
9. List some practical applications of the converse of the Pythagorean theorem.
10. Report on the development of the square root. Determine what methods were used to calculate square roots in ancient times.
11. Design a work sheet with numerical values for a, b, and c. Determine which are values for a right triangle.

WEBSITES

Explore the Internet to discover sites related to this topic. Check the CFV website for related information (http://www.cfv.org).

CAPTION SCRIPT

Following are the captions as they appear on the video. Teachers are encouraged to read the script prior to viewing the video for pertinent vocabulary, to discover language patterns within the captions, or to determine content for introduction or review. Enlarged copies may be given to students as a language exercise.

[piano playing "Chopsticks"]	Its sides always measure 3 units, 4 units,
(male narrator)	
Welcome to the assistant professor's	and its hypotenuse, 5 units.
educational video series.	The ancient Greeks discovered this natural right triangle,
Today, we are studying:	the builder's triangle.
The first lesson defines the Pythagorean Theorem.	They used it to construct houses, buildings, and temples.
The second lesson will solve some example problems,	Using the builder's triangle,
and explain how to use the theorem.	they could insure that their corners, joints, and vertices
Before we begin,	were perfect 90 degree angles.
let's review the definition of a right triangle.	In about 600 B.C., on the Greek island of Samos,
A right triangle has one 90 degree, or right, angle.	there lived a man named Pythagoras.
Usually, the sides of a right triangle are named:	Pythagoras was a mathematician and a philosopher.
Side "c" is called the hypotenuse.	Pythagoras was fascinated by geometry,
The hypotenuse is always the side opposite the right angle.	and he was interested in triangles.
Sides "a" and "b" are simply called sides.	He noticed something interesting
The sides meet to form the 90 degree angle.	about the shape and measurements of the builder's triangle.
This object is a natural, perfect right triangle.	He made a square out of the length of each side

of the builder's triangle.

Pythagoras took the square area	
	famous for 2,600 years.
formed by the side measuring	
3 units,	Let's review this important idea again.
and placed it in the square	
made from the hypotenuse.	In every right triangle, the sum of the areas
Then, Pythagoras took the area of the square	formed by the squares of the sides
formed by the side measuring	
$4 \text { units, }$	is equal to the area formed by the square of the hypotenuse.
and placed it inside the square	
made from the hypotenuse.	Now that we know what the Pythagorean Theorem is,
The total area of the squares	
	let's solve some problems.
made from the sides was exactly the same as the area	If you know the length of two sides of a right triangle,
of the square made from the hypotenuse.	you can find the length of the third side.
Pythagoras thought this result	
was interesting.	We can use the Pythagorean Theorem to find the length
He tried the same idea on other right triangles.	of the third side.
He tried it on thousands of triangles.	This right triangle has sides measuring 3 units and 4 units.
He found the same result	First, substitute the values into the equation.
on every right triangle	
he measured.	3 units squared equals 9 square units.
So, Pythagoras formulated	
his theorem.	4 units squared equals 16 square units.
For every right triangle,	
	9 plus 16 equals 25.
The sum of the areas formed by the squares	The value of "c" squared is 25 .
of the lengths of the sides is equal to the area of a square	However, we want to solve for the value of "c"--
made by the length of the hypotenuse.	not "c" squared.
In other words:	To solve for "c," take the square root

This discovery was so important that it has made Mr. Pythagoras
famous for 2,600 years.
his important

In every right triangle,
formed by the squares
is equal to the area formed by the square of the hypotenuse.

Now that we know what the et's solve some problems.

If you know the length of two ides of a right triangle,
you can find the length

We can use the Pythagorean Theorem to find the length
of the third side.

This right triangle has sides measuring 3 units and 4 units.

First, substitute the values nto the equation.

3 units squared equals

16 square units.

The value of "c" squared s 25

However, we want to solve

To solve for "c,"
take the square root
of both sides of the equality.
Taking the square root
of a value
is the reverse process
of squaring a value.
The square root of "c" squared is "c."

The square root of 25 is 5 .
The value of "c," or the length of the hypotenuse, is 5 units.

We know the value for each side of this triangle.

That was pretty easy.
The Pythagorean Theorem works
Pythagoras' theorem
is also versatile.

We can manipulate it
to create a formula
that solves for the length
of the hypotenuse.
For any right triangle whose sides are labeled "a" and "b,"
and whose hypotenuse is "c,"
the length of " c " is equal to the square root
of "a" squared plus "b" squared.

This expression states
that we are solving
for the length of "c," the hypotenuse.

We substitute the values in the formula,
and solve
for the value of "c."
We know how to find the length of the hypotenuse,
but how can we find side "b?"

For this right triangle, suppose we know the length of side "a,"
and the length of the
hypotenuse, or side "c."
How do we solve for the length of side "b?"

Again, we can manipulate Pythagoras' famous theorem:

To isolate the value of "b," we subtract
"a" squared from both sides of the equality.

This leaves us with the equality:

To find the value of side "b,"
we take the square root of each side of the equality.

The square root of "b" squared is "b."

The value of " b " equals the square root of the expression:

Let's use this expression to find side " b " of this triangle.

Side "c" is 4 units.

Side "a" is 3 units.
Using the formula, substitute the values for " c " and "a."

4 squared equals 16 , and 3 squared equals 9 .

16 minus 9 equals 7
"b" equals the
square root of 7
Unfortunately, Pythagoras did not have a calculator,
so he had to do a lot of arithmetic.

We use the square root functio on a calculator,
and find that the square root of 7 equals 2.646 .

The length of side "b" is 2.646 units.

Let's move on to another example.

We know how to find two of the sides of a right triangle.

How can we find the third side, "a?

We can begin with the original theorem,
but we need to rearrange it to solve for the value of "a."

To isolate the value of "a," subtract the value
of "b" squared from both sides of the equality.

Since we are solving
for the value of "a,"
take the square root of both sides of the equality

The value of side "a" equals the square root of "c" squared
minus "b" squared.
In this example, let's suppose that side "c"
is 7 units long and that side " b " is 5 units long.

Using the formula, substitute the values in the equation,
and then solve.
7 squared is 49 ,
and 5 squared is 25
49 minus 25 equals 24 .

The length of side "a"
equals the square root of 24 .
Using a calculator,
the length of side "a"
is about 4.899 units.
Let's review what we learned about the Pythagorean Theorem.
or any right triangle whose
sides are named "a" and "b,"
and whose hypotenuse
is named "c:"
The length of the hypotenuse,
or side "c," is:
The length of side "a" is:
The length of side "b" is
What's so important
about Pythagoras?
Something must be important since we remember him
after 3,000 years.
Pythagoras is the first known person to develop the idea
that the physical world can be modeled and represented
through pure mathematics.
Pythagoras showed us that mathematics is a special kind
of language we can use to develop ideas,
predict outcomes, and solve problems.

Problems can be solved
mathematically on paper instead of relying
on tedious experimentation, or trial and error

Let's look at a problem you might solve	is used over and over.
while learning about the Pythagorean Theorem.	The Pythagorean Theorem is one of the building blocks
How far does this ladder reach up the wall?	for more complex mathematical expressions.
To solve this, we can build a model.	It is used to model intricate problems like putting
First, name the length of the ladder "c."	satellites in orbit,
Use "a" to name the distance between the wall and the ladder. designing buildings, and so on.	
And use "b" to name the length of the wall.	Mathematics shapes and builds the world around us.
This triangle is a graphic model of our problem.	Science, technology, and industry as we know it
Pythagoras gave us a way to build a mathematical model.	would not exist without mathematics.
This equation represents the real wall and ladder	Understanding Pythagoras' theorem is an important
just as the triangle represented	
the real wall and ladder.	step toward mastering
mathematics,	

